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Abstract
The local structure of nanoparticles can be determined by a direct interpretation
of the first peaks observed in the radial distribution function obtained from
powder diffraction data measured to high Q values. Single peak fits to these
maxima yield the mean distances and width of the distribution in the first
few neighbouring shells. An algorithm is presented to calculate the radial
distribution function based on the simulation of a single nanoparticle. This
algorithm allows a flexible description of nanoparticle size and shape. Based on
this algorithm the structure of CdS:glutathione nanoparticles of less than 2 nm
diameter is presented. This structure consists of a CdS core with tetrahedrally
coordinated first neighbours and a shell of glutathione molecules. Within the
core several stacking faults lie in different orientations with a stacking fault
probability of 40%.

1. Introduction

Nanoparticles are defined as solid aggregates of matter intermediate in size between molecules
and clusters on the one hand and extended crystals or glass on the other hand. Thus they fall
into a size ranging from a few nanometres to several hundred nanometres. The main definition
besides size, however, is that these particles exhibit size dependent properties [1]. Besides
these fundamental properties interest in nanoparticles stems from the many applications that
have been developed [2, 3] and the recognition of their importance in natural environments [4].

The limited size of nanoparticles of much less than one cubic micron presently does
not allow the application of single crystal techniques to study the structure of nanoparticles.
Therefore, the investigations are currently limited to powders, both for diffraction experiments
as well as spectroscopic investigations.

If the nanoparticles are available in sufficient quantity as dry powders, such a powder
diffraction experiment on these particles does not require any special methods that would

1 Author to whom any correspondence should be addressed.

0953-8984/05/050125+10$30.00 © 2005 IOP Publishing Ltd Printed in the UK S125

http://dx.doi.org/10.1088/0953-8984/17/5/013
http://stacks.iop.org/JPhysCM/17/S125


S126 R B Neder and V I Korsunskiy

distinguish it from a powder diffraction experiment on crystalline material or a glass or liquid
sample. It may be carried out as an x-ray as well as a neutron diffraction experiment.

The finite size of the particles, however, is responsible for specific features within the
diffraction experiment that distinguish this diffraction pattern from other classes of materials.
The finite size of the particles causes a line broadening of the diffraction peaks. The Scherrer
equation [5] is often used to determine particle sizes from the peak width. Difficulties in
applying this formula to nanoparticles have been noted by several authors [6–8]. The Scherrer
equation is based on the assumption of a perfect lattice limited in size. Besides the finite
size, nanoparticles are often terminated by a variety of different hkl-planes, have a very large
fraction of their atoms on the surface of the particle and will often contain a high degree of
disorder. All these features contradict the basic assumptions of the Scherrer equation. Hall [9]
presented a method to nevertheless determine the nanoparticle size from powder diffraction
data. The Fourier transform of the powder diffraction data will yield maxima that correspond
to the interatomic distances. By analysing the longest interatomic distances that correspond
to significant maxima, Hall was able to determine the nanoparticle size.

By reducing the size of an otherwise perfect crystal, the finite size broadening will widen
the reflections to cover several degrees of 2�. A diffraction pattern of a nanoparticle of less
than some 5 nm shows just a few broad maxima and resembles the diffraction pattern of an
amorphous substance. The presence of defects, like stacking faults, leads to an additional line
broadening, superimposed on the pure size effect. The number of ‘reflections’ in such a powder
diffraction pattern is too small to apply structure determination and refinement methods that
may be used on powders of crystalline materials, like the Rietveld method. In addition to the
small number of peaks, one has to keep in mind that each peak consists of overlapping ‘Bragg’
reflections, thus obscuring the intensity of the individual reflections. Even in the absence
of any defects, a nanoparticle of 30–50 nm diameter will consist of merely 50–100 lattice
planes. This small number is too small to warrant the description of the particle as a ‘periodic’
arrangement of lattice planes. Accordingly the diffraction should rather be described as the
interference of the diffraction by individual atoms, as described by the Debye equation.

2. Pair distribution function of nanoparticles

The structural features of nanoparticles may be determined by analysing the Fourier
transformation of the diffraction pattern, which yields the radial distribution function
(RDF) [5, 10, 11], also called the pair distribution function (PDF) [12, 13]. See Keen [14] for
a review of commonly used definitions for the correlation functions. For the calculations in
this presentation the definition according to [13] was used:

G(r) = 4πr [ρ(r) − ρ0] = 1

2π

∫ ∞

0
Q[S(Q) − 1] sin(Qr) dr (1)

where ρ(r) is the density at distance r and ρ0 the average number density. By subtracting the
average number density, the pair distribution function oscillates around zero. With increasing
distance r the oscillations become smaller. The pair distribution function can be calculated [15]
from a structural model via

Gcalc(r) = 1

r

∑
i, j

i

[
bi b j

〈b〉2
δ(r − ri j)

]
− 4πrρ0 (2)

where bi is the scattering power of atom i and 〈b〉2 is the average scattering length of all atoms.
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Alternatively, a slightly modified pair distribution function has been used [16]:

G ′
calc(r) =

∑
i, j

i

[
bi b j

〈b〉2
δ(r − ri j )

]
− 4πr2ρ0. (3)

The pair distribution function is a diagram of the weighted interatomic distances within
the sample. The location of the maxima reflects the interatomic distance r , while the intensity
is proportional to the number of atom pairs at the given distance and their corresponding
scattering power. The interpretation of the pair distribution function yields information on
the local structure, i.e. the mutual arrangement of the atoms at short distances. The original
applications concerned the study of amorphous bulk materials like glasses and liquids. More
recently the analysis of the pair distribution function to disordered crystalline materials was
introduced [13].

Only a few studies on the pair distribution function of nanoparticles have been performed
so far. Hall et al [9] studied the pair distribution function solely in order to determine the
particle size. Since the study was applied to nanoparticles of metals, whose internal local
structure is close to that of the bulk material, no additional structural features were derived.

Petkov [17] analysed the local structure of nanocrystalline LiMoS2. They observed that
the Bragg reflections were significantly broadened compared to those of MoS2 and merged
into a slowly oscillating diffuse component at approximately 8 Å−1. The structural coherence
of the LiMoS2 compound was listed as approximately 50 Å, yet no information was given on
the particle size. The local structure, however, was well defined with Mo atoms residing in
distorted octahedra of sulfur. The local structure was determined up to 17 Å, a much smaller
distance than the structural coherence length. For this reason Petkov et al were able to fit the
local LiMoS2 structure based on a periodic model. The finite size of the structural coherence
did not influence the analysis.

Korsounski et al [18] determined the local structure of very small CdS nanoparticles
capped by glutathione. These particles measured less than 2 nm in diameter. The pair
distribution function was determined up to 25 Å, well beyond the particle diameter. Significant
maxima were observed to distances up to 17 Å. The analysis of such a small finite particle
required a different approach compared to [17]. The nanoparticles consist of a core of CdS
stabilized by an outer shell of glutathione molecules. These molecules were bound to the
inorganic core through the sulfur atom. The core can best be described as a disordered
tetrahedral network of CdS.

To analyse the structure of amorphous bulk materials like glasses and liquids, the reverse
Monte Carlo (RMC) simulation [19] is commonly applied to the pair distribution function as
well as directly to the powder diffraction data. The current implementations of this algorithm
require periodic boundary conditions and, even more restricting, a homogeneous material.
Thus they cannot yet be applied to the study of very small nanoparticles. Despite these
drawbacks the local structure of nanoparticles may be derived from a careful study of the pair
distribution function.

A prerequisite of the current analysis of small nanoparticles is the availability of a high
quality pair distribution function. To obtain such a pair distribution function, diffraction
data with excellent counting statistics up to high Q-values are required. From such data a
pair distribution function can be calculated that yields reliable pair distribution function peak
positions as well as peak intensities.

The nanoparticle studies so far were of comparatively simple chemical nature to allow a
direct interpretation of the pair distribution function maxima at short interatomic vectors, and
the main steps in such an analysis are reviewed in the remainder of this section. Figure 1 shows
the pair distribution function of CdS:glutathione, obtained from high energy x-ray diffraction
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Figure 1. Experimental pair distribution function of CdS:glutathione.

data [18]. The x-ray derived pair distribution function of such a compound is dominated by
the interatomic vectors between the heavy atoms. The Cd–Cd partial pair distribution function
and the Cd–S partial pair distribution function produce the most intense maxima, while the
S–S partial pair distribution function produces maxima of minor intensity. The interatomic
vectors within and between the glutathione molecules are so weak that they may, in a first
approximation, be neglected.

The first maximum at 2.53 Å corresponds to the Cd–S bond length observed in crystalline
CdS. Thus this first maximum can be interpreted to correspond to the Cd–S bond distance in
the nanoparticle. Due to the domination of the Cd–Cd partial pair distribution function, the
next nearest neighbour peak at 4.11 Å can be assigned to the Cd–Cd distances between the
Cd atoms around a central S atom. Given the Cd–S bond length and the Cd–Cd distance,
it follows that the bond angle Cd–S–Cd is approximately 109◦. This bond angle requires a
tetrahedral coordination of sulfur by cadmium. By comparing this partial structural model
with known Cd–S compounds it is reasonable to assume that Cd is likewise tetrahedrally
coordinated by sulfur. This would produce a S–S peak at 4.11 Å as well. Since the S–S
partial pair distribution function is too weak to produce a significant maximum, this model
is based on chemical intuition. For structures with atoms of similar scattering power, the
mutual coordinations could be assigned more unambiguously on the presence or absence of
next neighbour peaks.

In combination with further information, the structural model can be developed further
and be put onto a more quantitative basis. A quantitative chemical analysis yielded a chemical
formula of CdS0.5glutathione0.5, where the Cd:S ratio is 1:1 and half the sulfur atoms are part of
the glutathione molecule. IR spectra did not show any S–H modes. A structural model of a CdS
core with glutathione molecules attached to its surface is in agreement with the pair distribution
function and the chemical and spectroscopic data. In order to fulfil the Cd:glutathione ratio, at
least half of the sulfur atoms must be on the surface of the core and be part of the glutathione
molecule.

A quantitative assessment of the local structure is achieved by fitting a calculated pair
distribution function to the experimental data. The first neighbour maximum in figure 2 is very
narrow and of symmetrical shape. It can be described by a pair distribution function calculated
from a Cd–S distribution centred at 2.525 Å and a σ of 0.063 Å. The number of nearest
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Figure 2. Experimental (solid curve) and calculated pair distribution function for CdS:glutathione
from [18]. The dotted curve represents the calculated total pair distribution function, the broken
curve the Cd–S partial pair distribution function, and the straight line −4πrρ0.

neighbours was fitted to 3.25. This value is smaller than the bulk value of four tetrahedrally
coordinated neighbours both in the zincblende and the wurtzite structure. This lower number
is to be expected for a nanoparticle of finite size, since a large part of the atoms is located on
the surface and thus has a lower number of neighbours.

The second neighbour maximum in figure 2 is much wider and asymmetric, with a
shoulder on the low-R side. Since the pair distribution function is dominated by the Cd–
Cd distances these two components in the peak at 4 Å correspond to two different Cd–Cd
distances and respectively to two different Cd–S–Cd bond angles of 100◦ and 109◦. A fit yields
distances of 4.13 and 3.85 Å with widths of 0.15 and 0.12 Å and 4.3 neighbours. The longer
distances correspond to an ideal tetrahedral coordination with 109◦ Cd–S–Cd bond angles.
This environment describes the inorganic core of the nanoparticle. The shorter distances
of 3.85 Å, i.e. 100◦ Cd–S–Cd angles, correspond to the cadmium neighbours around those
sulfur atoms that are part of the glutathione molecule. Similar distance and angle schemes are
observed in metal organic compounds that contain small CdS clusters.

3. Structure of the whole particle

Such a fit, based on well resolved PDF maxima, can accurately describe the local structure of
the nanoparticle. The pair distribution function peaks at longer distances overlap too much
to allow such a direct interpretation. The overall structure of the particles must be derived
from a comparison between the experimental pair distribution function and a pair distribution
function calculated from structural models of the whole nanoparticle. The calculation of the
pair distribution function of a finite nanoparticle requires an important modification of the usual
algorithm used to calculate the pair distribution function. For an infinite object of homogeneous
density the average number of interatomic vectors increases with r2. By subtracting the average
number density in equations (2) and (3) the pair distribution function is equal to zero at large
distances.

For a single finite nanoparticle, however, a longest interatomic vector RD exists.
Accordingly the actual density ρ(r) is zero for distances longer than the longest diameter
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of the particle. For distances shorter than the shortest interatomic vector, ρ(r) is zero. For
intermediate vectors the density reaches a maximum. The exact shape of the distribution
depends on the atomic structure as well the shape of the nanoparticle. If one assumes a
homogeneously filled particle, the shape of the distribution may be calculated analytically or
numerically for a given shape like a sphere, cube, etc. Since real nanoparticles will be of a
more complicated shape and this shape will underlie a size and form distribution, one can in
general not define this average distribution very well.

The pair distribution function G(r) in equation (2) calculated for a single nanoparticle
will accordingly fall off with −4πrρ0 for distances longer than the longest diameter of the
particle.

In the experiment a different situation is encountered. The nanocrystalline particles form a
powder sample, in which the particles will be in contact, yet without any interparticle orientation
correlation. Thus for distances longer than the nanoparticle diameter, the sample is essentially
a homogeneously filled object. Interatomic vectors within each particle are well defined, while
interatomic vectors from one particle to the next are randomly distributed at a probability given
by the average number of interatomic vectors for the given distance. The pair distribution
function therefore has negligible oscillations and is equal to zero for all distances larger than
the particle diameter. The pair distribution function calculated from a powder diffraction
pattern of such a sample will therefore also have to be equal to zero for distances longer than
the particle diameter.

The calculated pair distribution function of finite nanoparticles can be calculated following
two different strategies. The simulated nanoparticles can be stacked in random orientation
within a large supercell with periodic boundary conditions. Unless the shape of the particles
is very regular, it is computationally expensive to achieve a tight packing. This holds even
more, if the nanoparticles are to be modified by for example an RMC algorithm to optimize the
fit to the experimental pair distribution function. Since no interparticle interaction has been
observed in an experimental pair distribution function,disadvantages of such a model of stacked
nanoparticles outweigh the advantage of having a realistic simulation of the nanoparticle
powder sample.

Alternatively the pair distribution function can be calculated from a single nanoparticle.
In order to achieve a fit to the experimental pair distribution function the average density
of the interatomic neighbours must be modified. The interatomic vectors that arise from
within the particle will produce the peaks of the pair distribution function. To simulate
the non-correlated randomly oriented interatomic vectors between atoms in neighbouring
nanoparticles, an additional smooth function added to G(r) is required. This function must
be zero for small distances r and equal to 4πrρ0 for distances larger then the nanoparticle
diameter. Additionally this function must be flexible enough to describe the effect of different
nanoparticle shapes. This can be achieved by modifying equation (2) to

Gcalc(r) =




1

r

∑
i, j

i

[
bi b j

〈b〉2
δ(r − ri j )

]
− 4πrρ0 tanh(S(R − r)) for r < R

1

r

∑
i, j

i

[
bi b j

〈b〉2
δ(r − ri j )

]
for r � R

(4)

where R is the nanoparticle diameter, and S a parameter related to the nanoparticle shape.
Figure 3 shows the pair distribution function for a periodic stacking of randomly oriented

zincblende nanoparticles, while figure 4 shows the pair distribution function of a single
nanoparticle calculated according to equation (4). Since the two graphs match perfectly well,
they have been printed separately. Inspection of figure 4 shows that the difference between
−4πrρ0 and −4πrρ0 tanh(S(R − r)) is negligible up to approximately half the nanoparticle
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Figure 3. Calculated pair distribution function for a packing of spherical CdS nanoparticles with
diameter of 13.25 Å. The particles are stacked with random rotation in an fcc lattice of 22.63 Å lattice
constant. The internal particle structure is a perfect zincblende structure.

Figure 4. Calculated pair distribution function for a single CdS nanoparticles with diameter of
13.25 Å. The broken curve represents −4πrρ0, the continuous thick curve the modified function
−4πrρ0 tanh(S(R − r)) with S = 0.133, R = 12.64 Å.

diameter, especially if experimental noise is taken into consideration. Thus the modified
calculation according to equation (4) needs to be carried out for nanoparticles, whose pair
distribution function has been determined for distances longer than half the particle diameter.
Accordingly, the analysis of the LiMoS2 structure by [17] did not need to take this finite size
effect into account.

The structure of a very small and highly distorted nanoparticle can qualitatively be derived
by comparison between the calculated and experimental pair distribution functions. In order
to achieve a quantitative determination, the structural parameters must be obtained from a fit to
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Figure 5. Calculated pair distribution function for a single CdS 19 Å nanoparticles with perfect
zincblende structure (thin curve) in comparison to the experimental pair distribution function (thick
curve). Except for the first maximum, all calculated maxima are too narrow and too high.

the experimental pair distribution function. Two approaches are currently being investigated.
In the first approach, many nanoparticles with a given initial configuration are stored in a
large supercell. The unit cell lengths are chosen long enough to prevent any overlap between
the individual nanoparticles. Since this introduces an artificially low average number density
the subtraction of 4πrρ0 is adjusted accordingly. To take the finite size of the particles into
consideration, equation (4) is used. An RMC algorithm is applied to modify the nanoparticles.
The algorithm is modified to restrict the modification to those within an individual nanoparticle,
like shifting of atoms, changing the particle size, etc.

Since the particle size and the particle size distribution are to be determined as well as the
atomic structure of the nanoparticles, this first approach requires extensive deviations from a
standard RMC algorithm. If capped nanoparticles are studied, a change of the particle size
requires the addition of atoms to the nanoparticle core and simultaneously a corresponding
shift of the molecules in the shell to avoid physically impossible short distances. The second
approach facilitates this requirement. Now parameters like size, composition, average short
distance distributions, coordination spheres, defect types and densities are defined that are
used to construct a nanoparticle and calculate the corresponding pair distribution function. A
differential evolution algorithm is used to modify the parameter set to achieve an optimal fit
to the experimental pair distribution function.

4. Estimation of nanoparticle disorder

Figure 5 shows the pair distribution function of a nanoparticle with 16 Å diameter based on the
perfect zincblende structure. It is obvious that the maxima at longer distances are too narrow
compared to the experimental maxima. Thus a high degree of disorder must be present in the
nanoparticles. Qualitative results are presented in this study.

Several models can be constructed to introduce disorder. The most simple model includes
only the different Cd–S–Cd bond angles within the core and at the surface. Calculated pair
distribution functions still show maxima that are too narrow.

A second model allows for the presence of one or several stacking faults mixing zincblende
and wurtzite layers along the [111] direction. Along this [111] direction the ‘long range’ order
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Figure 6. Calculated pair distribution function for an average of disordered particles (thin curve)
compared to the in comparison to the experimental pair distribution function (thick curve).

is lost and this leads to a broadening of the pair distribution function maxima. Within the
individual layers, however, the structure remains perfect and as a consequence the calculated
pair distribution function maxima are still too narrow.

Similarly, a model consisting of a perfect tetrahedrally shaped zincblende core and wurtzite
layers on the 〈111〉 surfaces does not yield a pair distribution function with sufficiently wide
maxima.

A model that allows for multiple stacking faults to occur along any of the 〈111〉 directions
is able to explain at least qualitatively the observed pair distribution function. This model was
constructed by adding individual atoms to a pair of atoms, until a nanoparticle of approximately
80 cadmium atoms was obtained. The particle was relaxed to give 2.525 Å distances between
nearest Cd–S neighbours, 109◦ Cd–S–Cd bond angles for fully tetrahedrally coordinated
S atoms and 100◦ Cd–S–Cd bond angles for twofold and threefold coordinated sulfur atoms on
the surface of the nanoparticle. The growth algorithm introduces several independently placed
and oriented stacking faults within the nanoparticle. Averaging the pair distribution function
of ten nanoparticles gave the pair distribution function shown in figure 6. This pair distribution
function reproduces the main features of the experimental pair distribution function.

The structure of the CdS:glutathione nanoparticle can be described by a highly disordered
‘inorganic’ CdS core. The core consists of approximately 70 to 90 cadmium atoms. Cadmium
and sulfur are tetrahedrally coordinated by the opposite species. The Cd–S bond length
distribution is a narrow distribution with a single mode at 2.525 Å and a width of 0.063 Å.
The stacking fault probability is approximately 40%. This high stacking fault probability
destroys the long range order and thus widens the pair distribution function maxima at longer
distances. On the surface of the particle glutathione molecules are located. Their sulfur atom
forms a bond to the cadmium atoms. The smaller Cd–Sglutathione–S bond angle of 100◦ causes
a distortion of the local Cd environment.

5. Conclusion

It has been shown that the first neighbour peaks in a pair distribution function of very small
nanoparticles with diameters of less than 2 nm can be interpreted based on single peak fitting
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procedures. Such a fit yields the average distance and distance distribution of the interatomic
vectors in the first few neighbour shells. By comparing the observed distances with known
periodic structures of similar composition, a reliable short range order model can be derived.
For longer distances beyond the third neighbour shell single peak fits are no longer reliable due
to the high overlap between adjacent peaks. Unless very high quality partial pair distribution
functions are available, these peaks cannot unambiguously be assigned to individual pairs. To
model the pair distribution function of small nanoparticles, the finite size must be taken into
consideration. If the pair distribution function has been determined to distances longer than
about half the particle diameter, the deviation of the average neighbour density from the straight
line 4πrρ0 must be taken into account. The empirical function presented in equation (4) allows
a flexible adjustment of the particle size and shape.
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